Proximal point algorithm for differentiable quasi-convex multiobjective optimization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A parameterized proximal point algorithm for separable convex optimization

In this paper, we develop a parameterized proximal point algorithm (PPPA) for solving a class of separable convex programming problems subject to linear and convex constraints. The proposed algorithm is provable to be globally convergent with a worst-case O(1/t) convergence rate, where t denotes the iteration number. By properly choosing the algorithm parameters, numerical experiments on solvin...

متن کامل

Proximal Quasi-Newton Methods for Convex Optimization

In [19], a general, inexact, e cient proximal quasi-Newton algorithm for composite optimization problems has been proposed and a sublinear global convergence rate has been established. In this paper, we analyze the convergence properties of this method, both in the exact and inexact setting, in the case when the objective function is strongly convex. We also investigate a practical variant of t...

متن کامل

An algorithm for approximating nondominated points of convex multiobjective optimization problems

‎In this paper‎, ‎we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP)‎, ‎where the constraints and the objective functions are convex‎. ‎We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points‎. ‎The proposed algorithm can be appl...

متن کامل

An Optimal Algorithm for Constrained Differentiable Convex Optimization

We describe three algorithms for solving differentiable convex optimization problems constrained to simple sets in Rn, i.e., sets on which it is easy to project an arbitrary point. The first two algorithms are optimal in the sense that they achieve an absolute precision of ε in relation to the optimal value in O(1/ √ ε) iterations using only first order information. This complexity depends on a...

متن کامل

Proximal Quasi-Newton Methods for Nondifferentiable Convex Optimization

Some global convergence properties of a variable metric algorithm for minimization without exact line searches, in R. 23 superlinear convergent algorithm for minimizing the Moreau-Yosida regularization F. However, this algorithm makes use of the generalized Jacobian of F, instead of matrices B k generated by a quasi-Newton formula. Moreover, the line search is performed on the function F , rath...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2020

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil2007367a